

How does genome sequencing help in medical research and enhance quality of healthcare

Journal Club of the Food and Health Bureau 28 Jan, 2022

Dr. Richard CHOY Kwong-wai Professor, Deputy Director, Prenatal Genetic Diagnosis Centre Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong

香港中文大學醫學院 **Faculty of Medicine** The Chinese University of Hong Kong

Outline

- Hearing loss project supported by HMRF (Ref No. 01120256; Jan 2014- Dec 2015)
- Introduce genome sequencing technologies and
- How genome sequencing helps research and enhance quality healthcare in Hong Kong

Hearing Loss

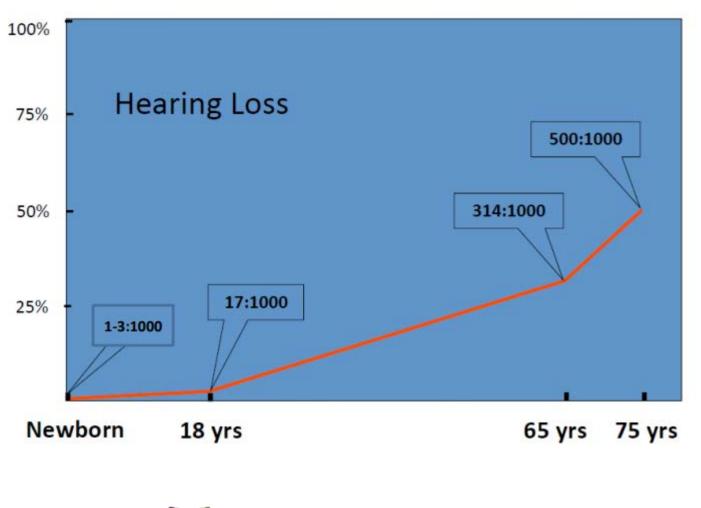
•Definition: partial or complete inability to hear sound in one or both ears*

• Incidence: three per 1000 newborns, one of the most common birth defect.[†]

•Epidemiological survey[‡] :

360 million people worldwide

20 million in China, 1.5% of total population


* http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0003535/

[†] Olusanya, B. O., and V. E. Newton, 2007

[‡] WHO global estimates on prevalence of hearing loss, 2012.

MORE COMMON than DOWN SYNDROME!!

Prevalence of Hearing Loss Increases With Age

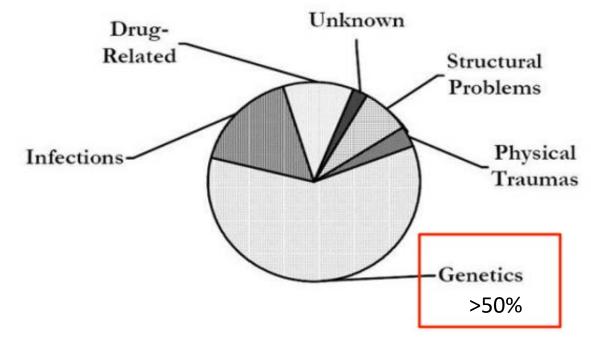
Hearing loss affects children

- Causes delays in speech and language skills "s", "sh", "f", "t", "k" and "ed"
- Language deficit results in lower academic achievement
- Communication difficulties lead to social isolation and poor self-concept
- May have an impact on vocational choices

The earlier of intervention, the better performance

"Infants who are diagnosed and received intervention **before six months** of age score 20-40% points higher on the school related measure, e.g. language social adjustment and behavior, compared with hearing-impaired children who receive intervention later on."

Etiology of Hearing Loss

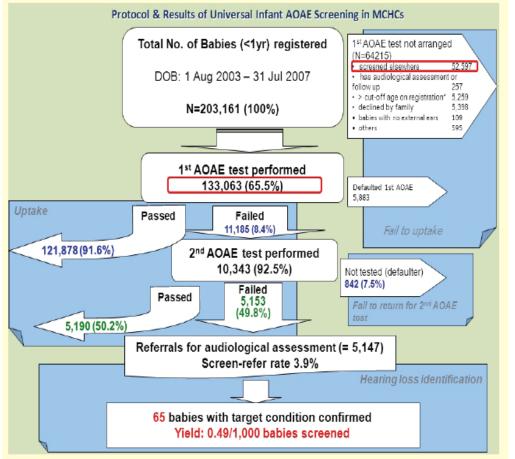

Ototoxic drugs

Antibiotics: aminoglycoside, such as Gentamicin

patients with specific variants in the mitochondrial genome (mtDNA)

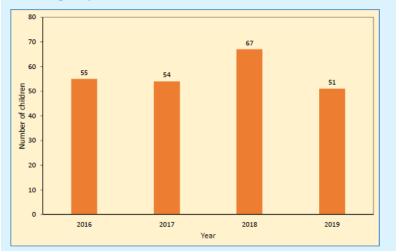
Loop Diuretics: Furosemide

Chemotherapy agents: Cisplatin



https://www.ncbi.nlm.nih.gov/books/NBK1434/

Figure 1. Protocol and results of universal infant AOAE screening in MCHCs



Children with Hearing Impairment: Experience at Child Assessment Service (CAS), Department of Health and in Hong Kong

Lam CC Catherine¹ ¹ Consultant Paediatrician

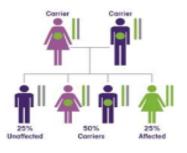
Child Assessment Service Opidemiology and Research OneCetin Figure 1. Number of children with significant hearing impairment between 2016 and 2019

Most of the patient was undiagnosed because of the extreme genetic diversity

			<u> </u>	
HEARING LOSS				
Branchio-oto-renal syndrome, type 1	113650	EYA1	Deletion /	4 months
			duplication	
	220290	GJB2 / GJB6	point mutation /	
Non-syndromic deafness			deletion	2 months
	500008	Mitochondrion	m.1555A>G	
			point mutation	
Waardenburg syndrome, type 1	193500	PAX3	point mutation /	4 months
			deletion	
Deafness, congenital, with inner ear	610706	FGF3	point mutation	4 months
agenesis, microtia, and microdontia				

Laboratory Address: 2/F., 2 Kwong Lee Road, Shum Shui Po, Kowloon, Hong Kong SAR, China

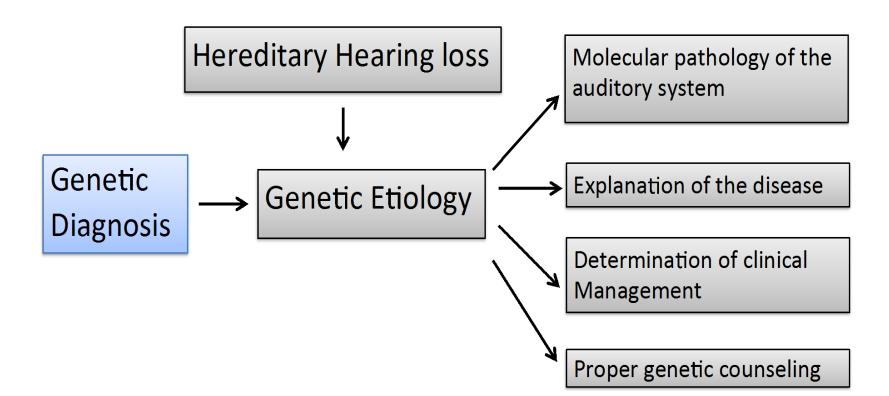
DFNB: Deafness nonsyndromic ,(B) autosomal recessive; DFNB1: GJB2 , GJB2/GJB6



HMRF funded project challenges current clinical practice paradigms by integrating target sequencing (NGS) into newborn screening for HL, because limited genetic testing is currently performed for newborns with HL, and only ~50% of infants with HL will have an identifiable cause.

Hearing loss genetic diagnosis and carrier screening

- Screening for inherited hearing loss conditions ("gene mistakes")
- Identifies couples at risk of passing on genetic conditions to their children



Advantage of early genetics diagnosis:

Main findings

HEALTH AND MEDICAL RESEARCH FUND

Target-enriched massively parallel sequencing for genetic diagnosis of hereditary hearing loss in patients with normal array CGH result

KW Choy*, Y Cao, STS Lam, FM Lo, CC Morton, TY Leung

Hong Kong Med J 2018;24(Suppl 3):S11-4 HMRF project number: 01120256

KEY MESSAGES

- 1. In our cohort, 15 common hearing-loss mutations with a high carrier frequency (15.9%) were screened; *GJB2* c.109G>A was the most common mutation (10.9%).
- 2. For patients with hearing loss who were negative for the 15 common mutations, our hearing-loss target capture panel combined with a massively parallel sequencing approach increased detection of pathogenic mutations or likely pathogenic variants by 21%.

Clinical implications

Consensus interpretation in ClinGen Hearing Loss Working Group p.Met34Thr and p.Val37Ile (c.109G>A) variants in *GJB2* Related Hearing Impairment

Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in *GJB2* by the ClinGen Hearing Loss Expert Panel

Jun Shen, PhD, FACMG ^{1,2,3}, Andrea M. Oza, MS, CGC ^{3,4}, Ignacio del Castillo, PhD ^{5,6}, Hatice Duzkale, MD, PhD ⁷, Tatsuo Matsunaga, MD, PhD ⁸, Arti Pandya, MD⁹,
Hyunseok P. Kang, MD ¹⁰, Rebecca Mar-Heyming, PhD ¹⁰, Saurav Guha, PhD, FACMG^{10,38}, Krista Moyer, MS, CGC¹⁰, Christine Lo, MS ¹⁰, Margaret Kenna, MD^{2,4}, John J. Alexander, PhD, FACMG^{11,39}, Yan Zhang, MD¹², Yoel Hirsch, BS¹³, Minjie Luo, PhD, FACMG ^{14,15}, Ye Cao, PhD¹⁶, Kwong Wai Choy, PhD ¹⁶, Yen-Fu Cheng, MD, PhD^{17,18,19}, Karen B. Avraham, PhD ^{5,6}, John Greinwald, MD⁷, Kejian Zhang, MD, FACMG⁷, Yukun Zeng, MD¹², Zippora Brownstein, PhD ²⁰, Lina Basel-Salmon, MD, PhD ^{20,21,22,23}, Bella Davidov, MS ²⁰, Moshe Frydman, MD ^{20,25}, Tzvi Weiden, BS²⁶, Narasimhan Nagan, PhD, FACMG ²⁷, Alecia Willis, PhD, FACMG²⁸, Sarah E. Hemphill, BS³, Andrew R. Grant, BS ^{3,29}, Rebecca K. Siegert, BS^{3,29}, Marina T. DiStefano, PhD ³, Sami S. Amr, PhD, FACMG ^{1,2,3}, Heidi L. Rehm, PhD, FACMG ^{1,2,3,29,30} and Ahmad N. Abou Tayoun, PhD, FACMG ³¹ on behalf of the ClinGen Hearing Loss Working Group

Genetics in Medicine (2019) https://doi.org/10.1038/ Conclusion: Resolving controversies in variant classification requires coordinated effort among a panel of international multi-institutional experts to share data, standardize classification guidelines, review evidence, and reach a consensus. We concluded that p.Met34Thr and p.Val37Ile variants in *GJB2* are pathogenic for autosomal recessive nonsyndromic hearing loss with variable expressivity and incomplete penetrance.

Key Impacts

HEALTH AND MEDICAL RESEARCH FUND

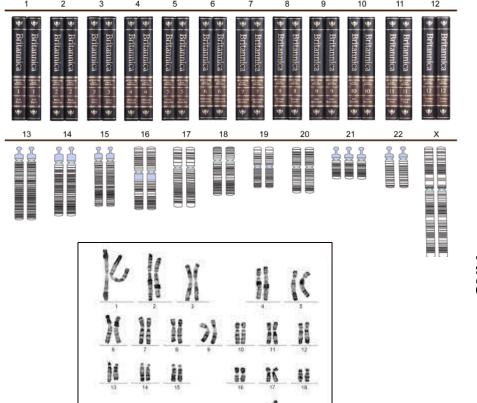
Target-enriched massively parallel sequencing for genetic diagnosis of hereditary hearing loss in patients with normal array CGH result

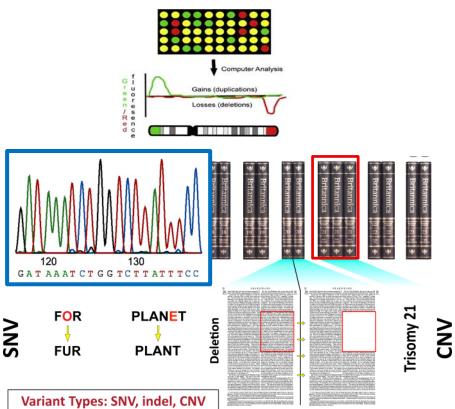
KW Choy*, Y Cao, STS Lam, FM Lo, CC Morton, TY Leung

1. On deaf individual

- Enabling diagnosis through data sharing
- Guiding management for optimal outcome
- 2. On family
 - Counseling for recurrence risk
 - Informing pre-implantation/prenatal diagnosis
- 3. On healthcare system
 - Reducing costs of unnecessary clinical testing
 - Becoming referral center for diagnostic testing
 - Demonstrating value of integrating genomic sequencing into newborn screening

Lessons learned





Requires different methods to study the full spectrum of genome variants

The human genome – a 'diploid encyclopedia' of the information required to sustain biological life

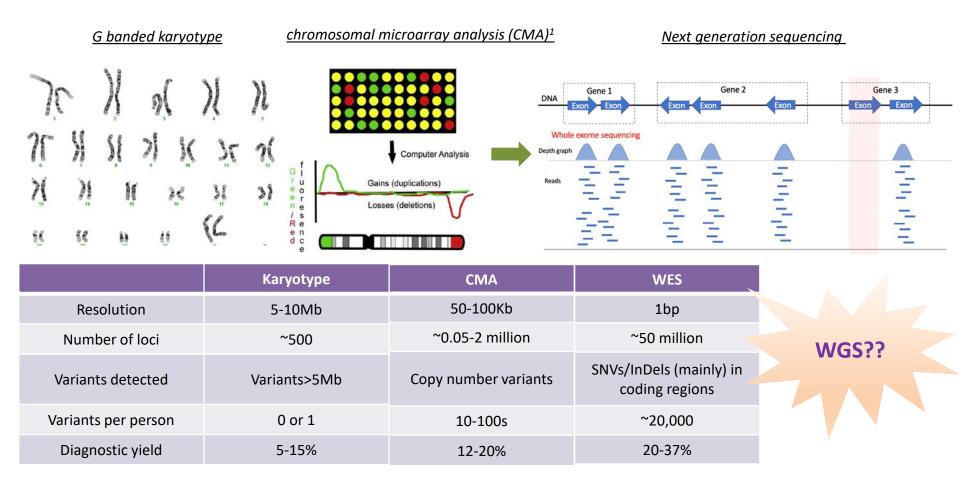
chromosomal microarray analysis (CMA)¹

SNV – changes in 'letters of the alphabet ; CNV - changes in paragraphs & pages of book Trisomy 21 associated with Down Syndrome = copy number variation, no mutant gene

Karyotyping (70`)

Lupski. American Journal of Human Genetics 2019

Genome sequencing vs. CMA (Exome)



Genome sequencing even coverage down to single bp resolution

Exome: corresponds 1.5%-2% of the genome CMA: limited and uneven genome coverage

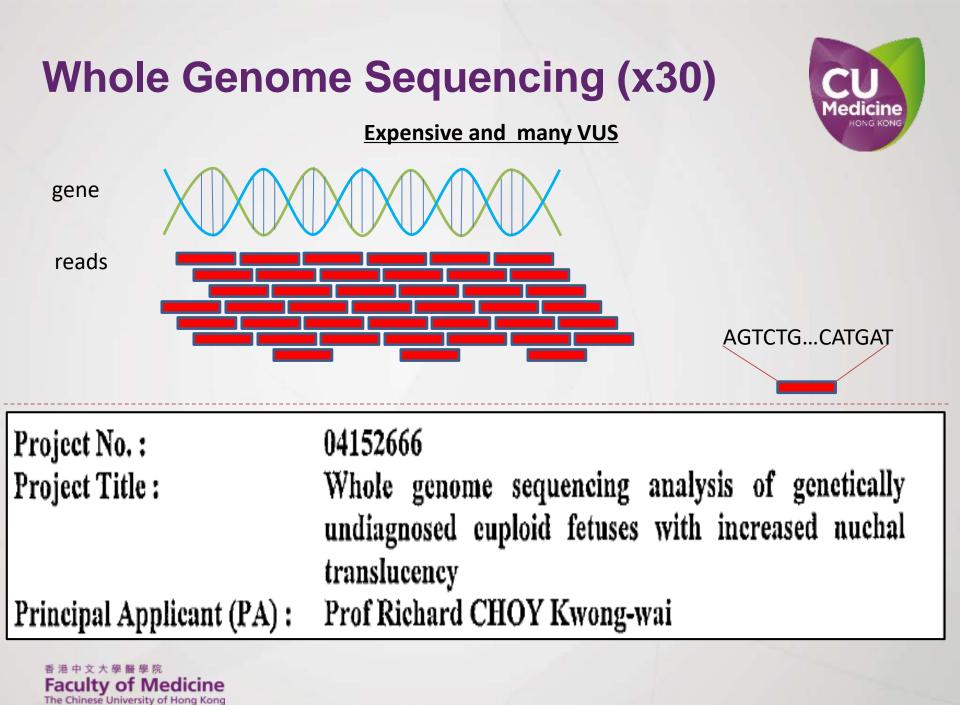
Superiority of Whole Genome Sequencing (WGS)

1. SMFM. et al. Am J Obstet Gynecol. 2016

2. Wright CF, et al. Nat Rev Genet. 2018.

3. Chau & Choy Curr Opin Obstet Gynecol 2021

Not uncommon in prenatal diagnosis



11 wk; NT =9.1mm

CVS: Karyotype and CMA = normal

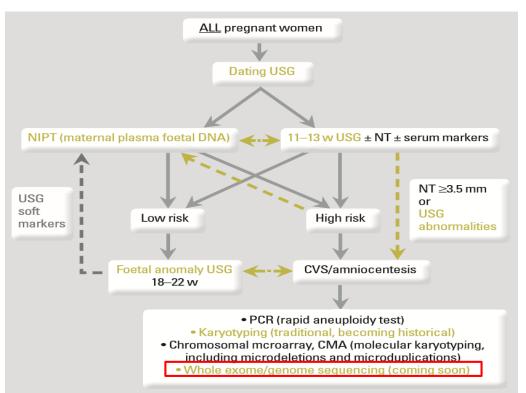
Prenatal Diagnosis of Fetuses With Increased Nuchal Translucency by Genome Sequencing Analysis

Kwong Wai Choy^{1,2,3†}, Huilin Wang^{4†}, Mengmeng Shi^{1†}, Jingsi Chen^{5†}, Zhenjun Yang¹, Rui Zhang⁴, Huanchen Yan⁵, Yanfang Wang⁴, Shaoyun Chen⁴, Matthew Hoi Kin Chau¹, Ye Cao^{1,6}, Olivia Y.M. Chan¹, Yvonne K. Kwok¹, Yuanfang Zhu⁴, Min Chen⁵, Tak Yeung Leung^{1,2,3} and Zirui Dong^{1,2,5*}

ORIGINAL RESEARCH published: 16 August 2019 doi: 10.3389/fgene.2019.00761

TABLE 1 Prenatal detection rates of the fetuses with increased NT by CMA/Ka

Clinical indications	Number of cases	CMA with/w	GS		P value
		Diagnostic yield	Diagnostic yield	95% C.I. (%)#	#
Isolated (increased NT with/without other soft markers)	34 (68%)	5/34 (14.7%)	10/34 (29.4%)	15.1-47.5	0.144 ^{\$}
Syndromic (increased NT with other fetal structural malformations)	16 (32%)	3/16 (18.8%)	6/16 (37.5%)	15.2-64.6	0.433*
Overall	50	8/50 (16%)	16/50 (32%)	19.5-46.7	0.0618
*95% confidence interval was calculated by *Pearson chi-square. *Fisher's exact test.	binomial exact calcula	stion.			


Genome Sequencing

Enhancement of Prenatal Diagnosis for Special Cases with the Introduction of Public funded Whole Exome Sequencing (WES) or Whole Genome Sequencing (WGS) in 2021

Existing service & current situation

• Publicly funded 1st tier Down screening was introduced in 2010; 2nd tier with Non-invasive prenatal testing (NIPT) in 2019 and Chromosomal Microarray (CMA) for high risk cases in 2019

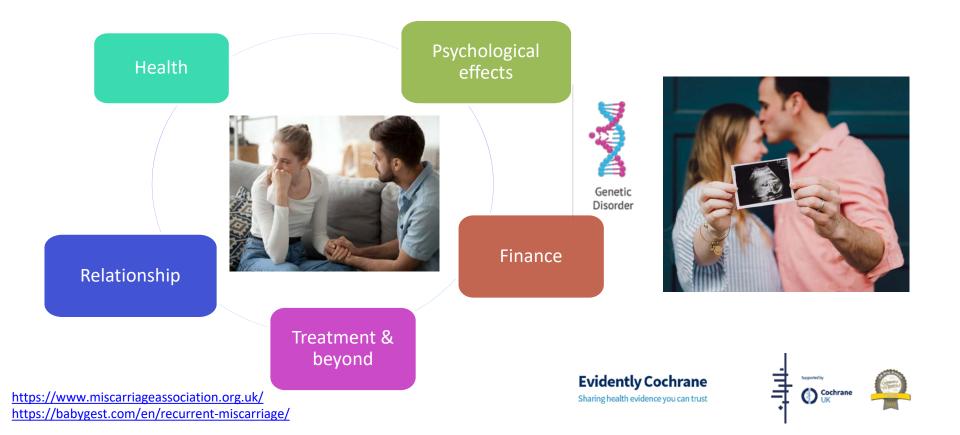
 $[\]label{eq:stability} \begin{array}{l} \mbox{Abbreviations: USG} = \mbox{ultrasonogram. NIPT} = \mbox{noninvasive prenatal testing. NT} = \mbox{nuchal translucency.} \\ \mbox{CVS} = \mbox{chorionic villus sampling. PCR} = \mbox{polymerase chain reaction.} \end{array}$

Figure 1. New Algorithms in Prenatal Diagnosis 2017

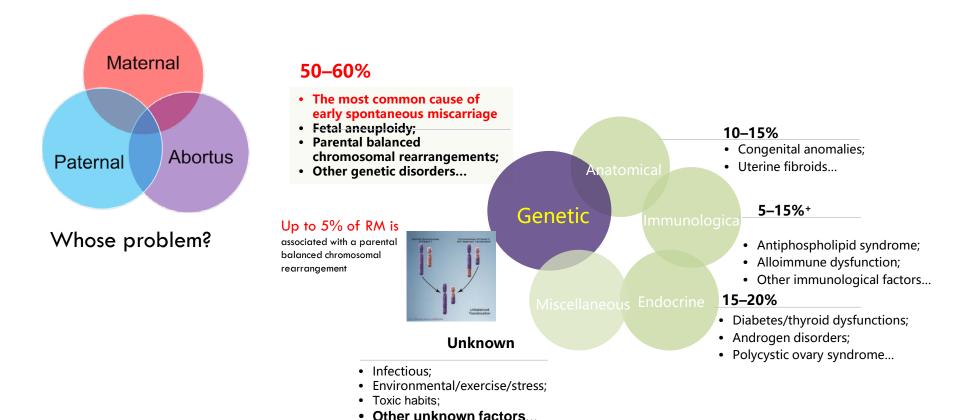
香港中文大學醫學院 Faculty of Medicine The Chinese University of Hong Kong

CC (Genetic Service)

Service gap and size of problem (Jan 2019 to Mar 2020):

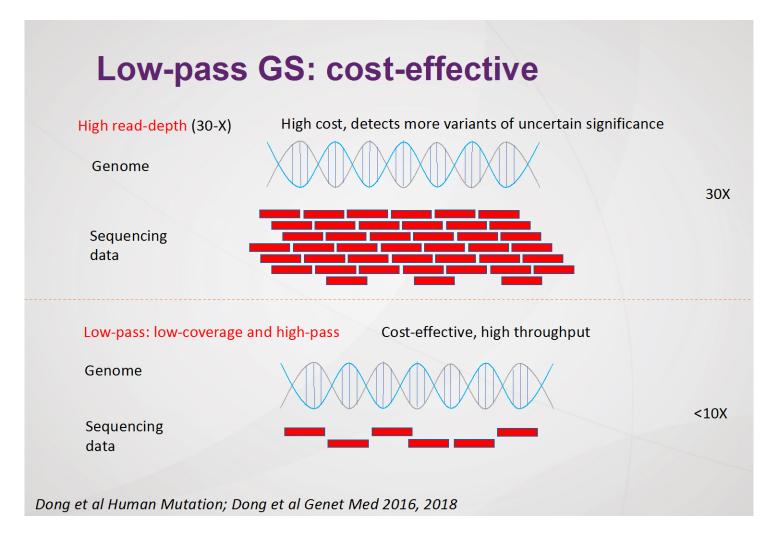

- Special prenatal cases with the presence of ultrasound fetal anomalies, but CVS/amniocentesis
 → PCR, karyotyping & CMA could not give a diagnosis in >50% of these special cases, which require WES or WGS to further improve prenatal diagnosis
- Offer special prenatal cases (HA) indicating for WES or WGS per year to start with from 2021/22 for 3 years

Choy et al. Front Genet. 2019

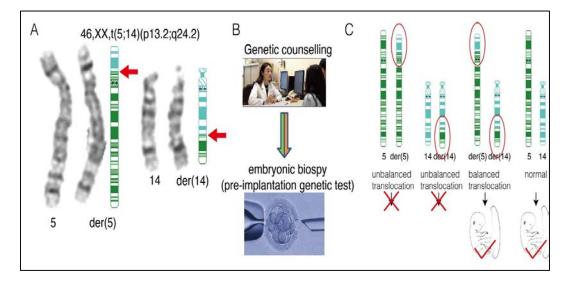

Couples with recurrent miscarriages are never easy

Definition- ≥ 2 times consecutive miscarriages (<24 weeks)

- Common in Hong Kong, recurrent miscarriage (RM) affects
- approximately 1 in 100 women^{1,2}(≥3 times) and becomes 1 in 20 (≥2 times)


Genetic factors: most common causes of RM

A modified genome sequencing approach

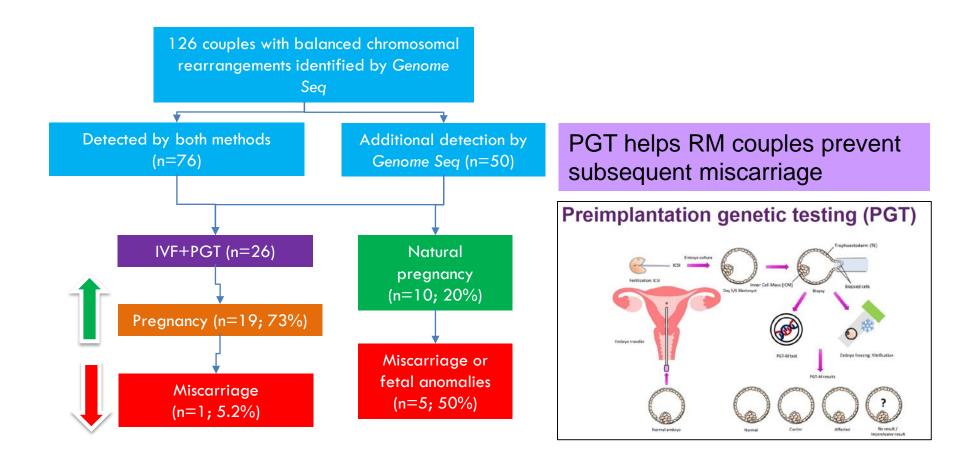


Pilot Genome Seqencing data: Recurrent Miscarriage couple

- Low-pass genome sequencing in RM couples
 -: SV & CNV defects common: 1 in 9 couples
- Doubled diagnostic yield to 11.7% (instead of 5%)
- Addressed limitation of current methods (karyotyping)

Genome Sequencing Explores Complexity of Chromosomal Abnormalities in Recurrent Miscarriage $\ \ I$

Zirui Dong,^{1,2,3,4,22} Junhao Yan,^{1,5,6,22} Fengping Xu,^{2,7,8,22} Jianying Yuan,^{2,7,22} Hui Jiang,^{2,7,22} Huilin Wang,^{3,4,9} Haixiao Chen,^{2,7} Lei Zhang,^{1,5,6} Lingfei Ye,^{2,7} Jinjin Xu,^{2,7} Yuhua Shi,^{1,5,6} Zhenjun Yang,^{3,5,7} Ye Cao,^{3,4} Lingyun Chen,^{2,7} Qiaoling Li,^{2,7} Xia Zhao,^{2,7} Jiguang Li,^{2,7} Ao Chen,^{2,7} Wenwei Zhang,^{2,7} Hoi Gin Wong,^{3,4} Yingying Qin,^{1,5,6} Han Zhao,^{1,5,6} Yuan Chen,^{2,7} Pei Li,² Tao Ma,^{2,7} Wen-Jing Wang,^{2,7} Yvonne K. Kwok,^{3,4} Yuan Jiang,^{2,10} Amber N. Pursley,¹¹ Jacqueline P.W. Chung,³ Yan Hong,^{13,14} Karsten Kristiansen,^{2,8} Huanming Yang,^{2,7,12} Raul E. Piña-Aguilar,^{15,16} Tak Yeung Leung,^{3,4,17,18} Sau Wai Cheung,^{11,17} Cynthia C. Morton,^{15,16,19,20,21} Kwong Wai Choy,^{3,4,17,18},* and Zi-Jiang Chen^{1,5,6,13,14,18,*}


ARTICLE

Dong et al., AJHG 2019

Potential long-term impact of genome sequencing in reproductive medicine?

CRF funded infertility study

ionie > runuing Opp	ortunities > Collaborative Research Fund >	Funded Research > Conaborative	e Research Fund	I (CRF) 2021/22
C4062-21GF	Recurrent First Trimester	CUHK / PolyU, HKU	48	8,021,650
	Miscarriage: Genetic Etiology,			
	Diagnosis and Prevention			

Mission of our CRF grant:

To identify the genetic cause of infertility and offer international accredited PGT services to help patients

<complex-block>

Method: low-pass genome sequencing and long-read sequencing Comprehensive analysis of CNV, SV and AOH in WGS Trios (N=900)

HMRF project summary

Etiology	 Providing a genetic diagnosis for patient with syndromal and non-syndromal hearing loss
Novelty	 Identifying genetic factors including previously unknown SVs, CNVs and SNVs among the abortuses and infertile couples contributory to RM
Translational	 Making GS technology translational into clinical diagnostics locally in Hong Kong and globally
Training and Education	 Training staff for the HK strategic service framework in genetic and genomic services and global needs

Currently, we provide four different DNA-based NGS genetic diagnosis services in Hong Kong

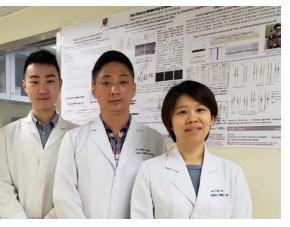
(3) FetalExome

(4) GenomSeq

Dong et al...Choy KW Genet Med. 2018; 2021 Wang et al....Choy KW Genet Med. 2020

Acknowledgement

Health and Medical Research Fund (HMRF)



TY Leung Y Cao

Ivan Lo Stephen Lam

Cynthia Morton

Contact information: richardchoy@cuhk.edu.hk

